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ABSTRACT

Cyclosporine A (CsA) is a powerful immunosuppressive drug used to prevent allograft rejection after organ transplantation as well as in human

and veterinary medicine. Unfortunately, its use is hampered by its nephrotoxic effects. The mechanisms of CsA-induced hypertension and

nephrotoxicity are not clear, but several studies suggest the possible involvement of free radicals. In this review we have summarized the effect

of some antioxidants that we have used in the recent years, in combination with CsA, to better understand the exact mechanism of action of
CsA and to try to open new perspectives in the treatment of CsA nephrotoxicity. J. Cell. Biochem. 116: 364-369, 2015.
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C yclosporine A (CsA), a lipophilic cyclic polypeptide isolated
from the fungus Tolypocladium inflatum, is a powerful
immunosuppressant drug that has improved the management of
transplantation and autoimmune diseases. The suppression of the
activation and proliferation of T cells by CsA is due to the inhibition
of the synthesis of interleukin IL-2, that leads to the suppression of
secondary synthesis of various cytokines, such as IL-4, interferon-vy
and granulocyte-macrophage colony stimulating factor [Wood
and Lemaire, 1985]. In human, CsA administration significantly
improves long term survival in case of solid organ transplantation
[Ciresi et al., 1992]. In veterinary medicine, CsA is used in cats to
prevent allograft rejection [Mishina et al., 1996].

In dogs to treat canine atopic dermatitis, keratoconjunctivitis
sicca, perianal fistula (Morgan and Abrams, 1991; Mathews et al.,
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1997; Guaguere et al., 2004), and in subjects with end-stage chronic
renal failure [Mathews et al., 2000]. Unfortunately, the CsA
treatment shows several limitations related to its nephrotoxic
effects, like the decrease of glomerular filtration rate (GFR) and
hypertension as previously demonstrated in rat models [Damiano
et al., 2013] as well as in clinical practice [Lee et al., 2011]. In fact,
when the concentrations of CsA are higher than the therapeutic
range (400-600ng/dl), CsA toxicity may emerge. It has also been
reported, in human allograft, that CsA induces necrosis and
hyalinosis of smooth muscle cells in the afferent renal arterioles,
isometric vacuolation of the proximal tubules (PT) [Kahan, 1987]
and that such effects are reversed by lowering CsA dose. Long term
CsA treatment in organ transplant recipients [Bach, 1994] and in
autoimmune patients [Taler et al., 1999] increases the risk of
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hypertension. Hypertension is usually reversible after discontinua-
tion of short-term CsA therapy [Taler et al., 1999], whereas
continued treatment even at reduced doses frequently results in
sustained hypertension [Schwartz et al., 1996; Sheikh-Hamad et al.,
2001]. Physiological alterations have been described in several
studies during CsA treatment. Among functional abnormalities, the
reduction of GFR and hypertension has mainly been described. The
renal effects are related to the vasoconstriction of glomerular
afferent arterioles, which causes a decrease of glomerular pressure
[Murray et al., 1985] and an increase in serum creatinine
concentration and the decrease in creatinine clearance [Lassila
et al., 2000]. Such effects are dose-dependent and reverse after short
term with Csa treatment [Henny et al., 1985]. Among the histological
renal damage, tubulointerstitial fibrosis and arteriopathy of afferent
arterioles have been documented, such effect are dose dependent but
irreversible [Andoh and Bennett, 1998]. In this review, we
summarized the effect of some antioxidants used in the recent
years, in combination with CsA, to better understand the exact
mechanism of action of CsA and to provide new perspectives in the
treatment of CsA nephrotoxicity.

Possible mechanisms involved in CsA-induced nephrotoxicity and
hypertension, include vascular endothelial dysfunction [De Nicola
et al.,, 1993], activation of renin-angiotensin system (RAS) [Tufro-
McReddie et al., 1993], increased vasoconstriction [Murray et al.,
1985] and enhanced sympathetic tone and increased synthesis of
endothelins [Fogo et al., 1992]. Data suggests that sodium and water
retention is associated with the development of cyclosporine-
induced hypertension [Ciresi et al., 1992] and possible involvement
of free radicals (Parra Cid et al., 2003) (Fig. 1).

To study the nephrotoxicity of CsA, a Sprague Dawley
normotensive rat model was developed [Young et al., 1995] using
a high dose of CsA (15 mg/kg/day) for 4 weeks [Capasso et al., 2008].
The morphological and functional renal abnormalities described in
rat model are similar to the nephrotoxic damages observed in CsA-
treated patients. We found in Sprague Dawley rats treated for 3
weeks with CsA 15 mg/kg/day as well as in rats treated for 1 week
with CsA 25 mg/kg/day [Damiano et al., 2013] an increase of blood
pressure, a severe decrease in GFR, an increase in Reactive Oxygen
Species (ROS) production and morphological damage. We also found
a decrease of absolute fluid reabsorption (Jv) in the PT, in agreement
with another investigator who suggested an alteration of ion
reabsorption along the tubules during the development of CsA-
induced hypertension [Ciresi et al., 1992].

RENIN-ANGIOTENSIN SYSTEM AND CsA

The renin-angiotensin system (RAS) is an important regulator of
blood pressure and renal function, but its role in hypertension is not
clear. The most important effector of RAS is angiotensin II (Ang II)
that is formed by angiotensin I (Ang I). Ang I is activated by
angiotensin converting enzyme (ACE), which is mainly located on
the surface of the vascular endothelium and the lung epithelium.
ACE seems to be the most important enzyme for Ang II formation

CsA
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Fig. 1. Hypothesis of CsA-induced neprotoxicity. CsA could induce an
increase in Ang Il and 02~ production. This is probably the cause of reduction of
NO bioavailability that induce Na+ and water retention that could induce the
alteration of tubular and glomerular reabsorption.

[Okunishi et al., 1993]. In CsA-treated rats on sodium-depletion,
normal-sodium [Ciresi et al., 1992] or high-sodium diets [Abassi
et al.,, 1996] an increase in plasma renin activity (PRA) has been
demonstrated [Lassila et al., 2000]. Since the CsA increases the PRA,
it is possible to hypothesize that drugs suppressing RAS could reduce
the CSA induced renal dysfunction, but this has not yet been fully
demonstrated. It has been shown that the CsA reduced the GFR renal
flow. Such reduction stimulates Ang II through vasoconstriction of
the efferent glomerular arterioles and contributes to the main-
tenance of GFR [Murray et al., 1985; Myers et al., 1988; Mervaala
et al., 1997; Lassila et al., 2000]. Thus, it is possible that the dilation
of the efferent arterioles by drug suppression of RAS could restore
the GFR.

OXIDATIVE STRESS AND CsA
Studies by Hall et al. (1999) reveal that free radicals are dramatically
increased in rat kidney after CsA treatment. Furthermore, it has been
reported that CsA induces membrane lipid peroxidation in transplant
patients [Wong et al., 2002]. Several ROS are involved in CSA-
induced nephrotoxicity, but the most important is superoxide (0*)
which is synthesized in mitochondria by xanthine. In the kidney it is
mainly produced by nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (NOX) [Wilcox, 2005; Nouri et al., 2007].

The NADPH oxidase subunits in the kidney are found in the blood
vessels, interstitial cells, glomeruli and tubules [Wilcox, 2005]. In
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fact, an early study identified NADPH oxidase components in
mesangial cells [Nava et al., 2003] and it was been demonstrated that
human glomerular mesangial cells produce ROS and express
p22phox, p67phox, and p47phox components of NADPH oxidase
[Radeke et al., 1991] and Nox-4 [Jones et al., 1995]. Moreover, it has
been shown that the outer medullary thick ascending limb (TAL) of
the loop of Henle of rats expresses p40phox, p47phox, p22phox and
Nox-2 [Li et al., 2002; Gorin et al., 2005; Li et al., 2002; Joshi et al.,
2013]. Finally, the renal cortex of Wistar rats and spontaneously
hypertensive rats present mRNA and protein expression for Nox-2,
p22phox, p67phox and p47phox [Patterson et al., 1999; Chabrash-
vili et al., 2002; Kitiyakara et al., 2003; Huang et al., 2011]. There are
several scientific studies showing that CsA treatment stimulates ROS
production. In fact, an increase in renal cortical of lipid peroxidation
and an increase of urinary excretion of ROS during administration of
CsA has been observed [Calo et al., 2002]. In addition, the same
authors reveal in hypertensive patients treated with CsA, an increase
in the plasma hydroperoxide levels and an increase of mRNA
expression of p22-phox, an essential NADPH oxidase component.
Moreover, studies by Galle et al. (2000) reveal that incubating rat
aortic rings with CsA leads to a significant increase in superoxide
release. In addition, Diederich et al. (1994) demonstrate that pre-
treatment with a superoxide dismutase (SOD) normalizes the
impaired acetylcholine induced relaxation in arteries isolated from
rats treated with CsA. These data suggest that the endothelial
dysfunction induced by CsA is related to an increase of ROS
production and the development of hypertension [Nishiyama et al.,
2003; Damiano et al., 2013].

Since it has been hypothesized that CsA toxicity could be mediated
by ROS [Parra et al., 1998], in the last several years antioxidants have
been tested to find a new drug that could prevent the damages
induced by CsA. In the following paragraphs, we summarize recent
reports on antioxidant effects on CsA treatment (Table I).

THE INFLUENCE OF THE ANTIOXIDANT HYDROCORTISONE

To improve the therapeutic effects of CsA, in several protocols, CsA is
administered in association with corticosteroids. In fact, several lines
of evidence suggest that the hydrocortisone (HY), a steroidal anti-

inflammatory drug, is able to reduce lipid peroxidation induced in
rat by ligated loop of the distal ileum or in the rat hyppocampus
under stress condition [Tolstuckima et al., 1999]. The immunosup-
pressive activity of HY is due to its ability to induce apoptosis of T
lymphocytes by activation of lysis genes or by the repression of the
expression of genes involved in proliferation and cell growth
[Wyllie, 1980; Cohen, 1991; Jeon et al., 2005]. Recently we have
analyzed [Ciarcia et al., 2012] in the kidney tissue, the effects of CsA
used alone or in association with HY by in vivo experiments. We
have evaluated the lipid peroxidation by assaying the Malondiald-
heyde (MDA) production by means of the thiobarbituric acid test and
we have found that CsA treatment increases MDA levels while HY is
able to reduce the CsA activity. We have also analyzed the catalase,
the superoxide dismutase and the glutathion peroxidase levels and
have found that HY reduced the nephrotoxic effects induced by CsA
[Ciarcia et al., 2012]. These data, together, demonstrate that, in rat
kidney, CsA toxicity is due to an oxidative stress overload and that
the HY reduces lipid peroxidation and consequently inhibits the
toxicity induced by CsA. Unfortunately, HY use is limited by its
chronic toxicity such as the suppression of body weight gain and
food intake. [Ciarcia et al., 2012].

THE INFLUENCE OF THE ANTIOXIDANT VITAMIN E (Vit E)

Studies by De Arriba et al. (2013) reveal that glomeruli of rats treated
with CsA have an increase of ROS synthesis. This increase is also
observed in cultures rat mesangial cells incubated with CsA. They
have shown that pre-treatment with the antioxidant vitamin E
inhibits cellular damage. One of the main sources of intracellular
ROS is mitochondria. Studies by De Arriba et al. (2013) reveal the
specific production of 0>~ by mitochondria in LLC-PK1 cells using
Mitochondrial Superoxide Indicator (MitoSOX Red). They have
found that pre-treatment with vitamin E inhibit the mitochondrial
synthesis of 0% suggesting that the antioxidant can avoid
nephrotoxic effects of CsA by scavenging 0%~. These data are
supported by other authors that have proved that selective inhibitors
of mitochondrial electron transport decrease the generation of ROS
induced by CsA in MDCK cells [Jeon et al., 2005]. These findings are
in agreement with the results obtained in an our previous study in
which we measured ROS production by the dichlorofluorescein
(DHE) and Thiobarbituric Acid Reactive Substances (TBARS) assays
finding a decrease in ROS and TBARS by vitamin E treatment
[Ciarcia et al., 2012]. Unfortunately, there are not enough data in the

TABLE I. Summary of the Effects of Each Antioxidant on CsA Nephrotoxicity.

GFR Jv BP

Antioxidant ROS levels Histological damage
Hydrocortisone® Restored Partially restored
Vitamin E>¢ Restored Partially restored
DOPET® Restored Partially restored
MnSOD® Restored Partially restored

No data available
No effect

No data available
Partially restored

No data available
No data available
No data available
No data available

No data available
No data available
No effect
No effect

Ciarcia et al., 2012.
bAndres and Cascales, 2002.
“Parra et al., 1998.

Bach, 1994.

“Capasso et al., 2008.
fMancini et al., 2006.
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literature about the protective effect of vitamin E on the kidney
functions. There are evidences suggesting that vitamin E has not
significant effects against the CsA-induced reduction in GFR
[Barany et al., 2001].

THE INFLUENCE OF THE ANTIOXIDANT HYDROXYTYROSOL (DOPET)
The natural antioxidant phenol hydroxytyrosol (DOPET), present in
high concentrations in extra virgin olive oil, was tested in order to
verify its ability to reduce CsA-induced nephrotoxicity, based on the
high bioavailability, the high scavenging power and the in vivo low
toxicity [Barany et al., 2001; D’Angelo et al., 2001; Capasso et al.,
2008]. We have shown that DOPET reduced the CsA-induced
oxidative stress in cells of aorta and in renal artery during DHE
experiments [Galletti et al., 2005], but it was unable to prevent CsA
induced hemodynamic effects. We have observed hypertension as
well as a 50% decrease in GFR in rats treated for 21 days with CsA
[Capasso et al., 2008], but we have not observed any protective effect
on GFR and blood pressure when the rats were treated with CsA plus
DOPET. These data suggest that the hemodynamic alteration and the
hypertension are not necessarily related to the increase of free
radical. It is possible that other underlying mechanisms, such as
artheriolopathy, could act on renal failure and hypertension. This
interpretation is in contrast with the data reported in the literature
demonstrating that some antioxidants, like vitamin E [Parra et al.,
1998] and licopene [Atessahin et al., 2007] are able to reduce
oxidative stress and renal function at the same time. However, it
must be considered that such compounds, besides their antioxidant
activity, have a key role in the modulation of some enzymatic
activities and in alteration of gene expression (Andrés and Cascales,
2002; Siler et al., 2004). Therefore, further investigations are
required in order to clarify their activity in renal hemodynamic. For
example, it would be interesting to assess the effects on the kidney of
a higher dose of DOPET on renal function during treatment with CsA.

THE INFLUENCE OF THE ANTIOXIDANT MITOCHONDRIAL
RECOMBINANT MANGANESE CONTAINING SUPEROXIDE
DISMUTASE (rMnSOD)
MnSOD is superoxide dismutase (SOD) family member, mainly
located in the mitochondrial matrix [Weisiger and Fridovich, 1973;
Okado-Matsumoto and Fridovich, 2001; Zelko et al., 2002; Holley
et al., 2012] encoded by different genes. It has anticancer properties
both in vivo and in vitro [Ridnour et al., 2004; Damiano et al., 2013]
directly acting on the growth rate, invasiveness, anchorage-
independent growth, etc. of cancer cells. A new recombinant
MnSOD (rMnSOD) has been isolated by our group from a human
pleiomorphic liposarcoma cell line [Mancini et al., 2006]. While
MnSOD is generally localized in the mitochondrial matrix, the
rMnSOD is mainly secreted into the media. Since it has strong
antioxidant activity, we evaluated the effects of rtMnSOD on CsA
nephrotoxicity and we have found that, with respect to DOPET,
rMnSOD is more effective on renal hemodynamic damage induced
by CsA. We have shown, in rats treated with rMnSOD plus CsA, a
good restoration of ROS production and in the GFR but we have not
found a restoration of blood pressure [Damiano et al., 2013].

In conclusion, our data indicate that rtMnSOD is able to prevent
arterial and renal oxidative stress and the reduction in the GFR

consequent to CsA administration. In addition, renal morphology
was partially improved, in fact, the lesions were mainly tubular,
interstitial and arterioral. It would be interesting to perform a longer
treatment (3 weeks rather than 1 week) to see if there is an effect on
the blood pressure.

The data presented herein show that the mechanism of
nephrotoxicity induced by CsA is strongly influenced by
oxidative stress, but the different antioxidant compounds used,
while being able to restore the normal ROS levels, do not produce
therapeutic effect on renal hemodynamic. We have demonstrated
that only the rMnSOD is able to restore the GFR, but we have not
found any effect on blood pressure [Damiano et al., 2013]. This
lack of efficacy is probably related to the mechanism of action of
the antioxidants used that act on ROS production in general.
During CsA treatment, we have demonstrated a GFR decrease, by
clearance of inulin, and we have shown that the decrease of
absolute fluid reabsorption in proximal tubule (PT), measured
by micropuncture experiments, is related to an increase in
0> measured by DHE assay [Damiano et al, 2013]. We
hypothesize that the decrease of GFR is linked with the increase
of 0%~ that reduce the availability of Nitric oxide (NO), which
could be the cause of glomerular vasoconstriction. It is possible
that blocking the activity of NADPH oxidase, a simultaneous
recovery of GFR and hypertension could be observed as a
result of the increased level of available NO. To prevent the
reduction of NO, a good drug candidate might be 4’-Hydroxy-3'-
methoxyacetophenone (Apocynin), a more specific inhibitor of
0% production [Panico et al., 2009]. Apocynin prevents the
assembly of the NADPH oxidase to the cell membrane thereby
blocking the production of superoxide (Stolk et al., 1994) and
limits the amount of superoxide available for the binding with
NO. Therefore, according to its characteristics, Apocynin might
be useful to reduce the toxic effect of the CSA and studies in our
laboratories are in progress to test this hypothesis.

In conclusion, the exact mechanism of nephrotoxicity induced by
CsA remains unclear and more experiments are necessary to
investigate these effects. Thus, the use of specific antioxidants of
new generation, like rMnSOD and Apocynin, could reduce the
nephrotoxic effect induced by CsA and open new perspectives in the
treatment of CsA nephrotoxicity.
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